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Abstract-Wave instability of mixed convection flow along an isothermal vertical flat plate is analyzed by 
the linear theory for the entire mixed convection regime (0 < x Q 1, x = [l + (Grx/Re:)“4]-‘) for fluids 
with Prandtl number of 0.7 and 7. In the analysis, the domain beyond the mainflow boundary layer edge 
(q > q,) is solved analytically to provide boundary conditions at 1 = qrn instead of those at q = co. This 
treatment is important in the use of the modified Thomas transformation when I (A = Re$*+Grj“‘) is 
small. Dual solutions of critical 1* values are seen to exist in the range of 0 ,< x < 0.5. The results show 
that the two limiting neutral stability curves, one for the Blasius flow (x = 1 or Gr, = 0, with I* = 290.6) 
and the other for the pure free convection flow (x = 0 or Rex = 0, with I* = 33.33), correspond to two 

different modes. 

INTRODUCTION 

THE PROBLEMS of wave instability for pure forced 
and pure free convection along isothermal vertical flat 
plates have been widely investigated. Literature on 
wave instability of mixed convection flow, however, 
is somewhat lacking. Mucoglu and Chen [l] solved 
the wave instability problem of forced-convection- 
dominated mixed convection flow by employing a 
fourth-order Runge-Kutta numerical integration 
scheme along with a filtering technique. From their re- 
sults, the buoyancy force is found to have a signifi- 
cant effect on the wave instability characteristics of the 
flow. Recently, Lee et al. [2] investigated the flow in- 
stability problem of the free-convection-dominated 
case, with a free stream moving in the direction of the 
buoyancy force. In the latter study, the main flow 
quantities were obtained by the local non-similarity 
method at the second level of truncation. The in- 
stability equations were then solved by the modified 
Thomas transformation method proposed by Lee et 
al. [3]. The results reveal that an increase in the free 
stream in the direction of the buoyancy force decreases 
the critical Grashof number. However, the stability 
curve (i.e. the disturbance frequency vs the Grashof 
number curve) for an amplification rate of 
cli = -0.005, where cli is the imaginary part of the 
disturbance wave number c(, shifts to a higher value 
of Grashof number. This means that the presence of 
a free stream that assists the buoyancy force causes 
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instability of the flow to occur at a smaller local 
Grashof number as compared to the case of pure 
free convection, but the amplification rate of the dis- 
turbances in the downstream locations is reduced sig- 
nificantly. This finding agrees with that of Carey and 
Gebhart [4] from their study of instability of strongly 
buoyant mixed convection flow under the boundary 
condition of uniform surface heat flux. 

It is noted that in conventional approaches an 

analysis of mixed convection flow is divided into two 
regimes, the forced-convection-dominated regime and 

the free-convection-dominated regime. The mainflow 
quantities obtained from solutions of these two 
regimes may have discrepancies due to numerical 
errors. Fortunately, a smooth change of the mainflow 
quantities from the pure forced convection end to the 
pure free convection end can be achieved by employ- 

ing a new transformation method such as that pro- 
posed by Lee et al. [5]. The purpose of the present 
work is to investigate the linear wave instability of 

mixed convection flow along an isothermal vertical 
flat plate for the entire regime by employing the afore- 
mentioned smooth change of the mainflow quantities. 
The disturbance amplitude equations governing the 
flow are solved by using the modified Thomas method 
[3]. To ensure highly accurate solutions even at small 
values of I (1 = Rep/*+ GrJ14), the domain beyond 

the mainflow boundary layer edge (q 2 qoo) is solved 
analytically to provide appropriate boundary con- 
ditions at r] = q, for the disturbance amplitude 
equations. 

It should be pointed out that currently no exper- 

imental data are available on the wave instability of 
mixed convection flow. For the pure free convection 
flow, the existing experimental data [&8] provide criti- 
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NOMENCLATURE 

a, coefficients of equation (5) expansion [Km ‘1 or attenuation 

; 

coefficients of equation (6) coefficient defined by equation (19) 
reduced stream function Y attenuation coefficient defined by 

9 gravitational acceleration (9.80665 m s- ‘) equation (20) 

9, Thomas transformation of the &function y0 inclination angle of the plate measured 

ST Thomas transformation of the s-function from the horizontal position [deg.] 

Gr, local Grashof number, gB( T, - Tm)X3/v2 6 characteristic boundary layer thickness, 

Gr, Grashof number based on 6, gfiTcS3/v2 W [ml 
m defined as (X/T,)(dT,/dX) rl pseudo-similarity coordinate, Y/S 
Pr Prandtl number rl, boundary layer edge of the mainflow 

Re, local Reynolds number, U,Xjv 0 dimensionless temperature, (T- TJT, 

Re, Reynolds number based on 6, U,Sjv Red 
s dimensionless amplitude function of the 2 @,I& 

temperature disturbance, f//T= 4 dimensionless amplitude function of the 
T temperature [K] disturbance, $/isU, 

TC characteristic temperature [K] X modified buoyancy parameter, 
IA dimensionless streamwise velocity, U/U, [1 +(Gr,/Re~)“4]-’ 

U streamwise velocity component [m s- ‘1 @ stream function of the disturbance 

UC characteristic velocity [m s- ‘1 [m’s_‘] 
V dimensionless transverse velocity, VA/U, w dimensionless wave frequency, &5/U,. 
V transverse velocity component [m s- ‘1 
x streamwise coordinate measured from the Superscript 

leading edge of the plate [m] disturbance quantity. 
Y transverse coordinate measured normal 

to the plate [ml. Subscripts 

C characteristic quantity 
Greek symbols W condition at the wall 

dimensionless wave number, d6 cc mainflow quantity beyond qco. 
volumetric coefficient of thermal 

cal Grashof numbers that do not agree well. 
Furthermore, the predicted critical Grashof numbers 
based on the quasi-parallel flow model [2,9] are two 
to three orders smaller than the experimental data [b 
81. The wave instability analysis of Blasius flow by the 
non-parallel flow models [lo, 111 has resulted in a lower 
critical Reynolds number than that predicted by the 
parallel or quasi-parallel flow model. This is due to the 
streamwise dependence of the disturbance amplitude 
function. The non-parallel flow model thus will not 
necessarily give a better prediction for the pure free 
convection flow. As a preliminary study to find the 
instability characteristics of the entire mixed con- 
vection regime, the present investigation employs the 
simpler quasi-parallel flow model [ 11. 

ANALYSIS AND SOLUTION METHOD 

In the wave instability problem of a mixed con- 
vection flow along an inclined flat plate, the per- 
turbation stream function I$ and perturbation tem- 
perature p can assume the respective forms 

J(X, Y, 0 = q(Y) exp (i[BdX--i&t) (1) 

hXY,r)=.?(Y)exp(i[BdX-i&t) (2) 

where X0 denotes an upstream location where natural 
disturbances occur or artificial disturbances are given. 
The axial and transverse velocity components of the 
disturbances are then, respectively 

0 = a$/ar, P= -a$jax. (3) 

Substituting equations (l)-(3) into the linearized dis- 
turbance equations (which are based on the linear 
theory and boundary layer flow approximations, see 
ref. [12]) and followed by introducing the following 
dimensionless quantities : 

u = uju,, v = VAjUc, 

8 = (T- TcJlTc, 4 = &‘isor,, 

s = f/Tc, a = 2, 

o = cZi/U,, A = Re,, 

5 = Grd&, ~2 = qslx) (x se/ax+ me), 

m = (X/T,)(dT,/dX), Re, = U,Sjv, 

Gr, = /?gT,S’/v’, q = Y/6 (4) 
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one obtains 1 = &-:I* + &:I4 = &:I* x- ’ = GrJj4( 1 -x)- ’ 

~‘“+a,~“‘+a,~“+a,~‘+a,~+a,s’+u,s = 0 (5) 

s”+b,s’+b2S+bj~‘+b4~ = 0 (6) 

4(O) = 4’(O) = l#(co) = @(co) = 0 (7) 

k,s’(O)+k,s(O) = S(co) = 0 (8) 

and 

(12) 

possesses a smooth transition from the pure forced 
convection end (1 = Red’* and x = 1) to the pure free 
convectionend (1 = Gr:/4 and x = 0) as the buoyancy 
parameter GrJRe: increases from 0 to co. With the 
definitions of equation (1 l), the mainflow quantities 
u, v, u”, v” and R can be expressed as 

a, = -v 
ll=j- 

u2 = -2a*-il(ctu-w) 
0 = (l/4)[(l+X)rl.Y-(3-x)f+x(l-x)~!/~xl 

uj = cr2v+v” 
u” = f”’ 

u4 = cr4+it(lz(t12u-c0~+u”) 
v” = (1/4)[(1 +&f”‘-(l-3X)y’ 

u5 = 5 sin y0 
+x(1 -x) V/&l 

u6 = -iat cos y0 

b, = Pr a, 

b2 = -a*-il Pr(cw-co) 

R = -(l/4)[(l+X)rl~+X(l-x)~6/~xl (13) 

where the functions f, f’, f”, f”‘, 0 and 0 satisfy the 
following mainflow equations [5] : 

b, = -PrR f”‘+ ](3 -x)/4lff” - [(l - x)/2lf” + (1 -x)46 

b, = iui Pr tl (9) 

where the primes denote derivatives with respect to q. 
The form of boundary condition (8) at n = 0 will 
be determined according to the appropriate thermal 
boundary condition. In equations (9), the inclination 
of the flat plate y0 is measured from the horizontal 
position. It should be pointed out here that the dimen- 
sionless transformation as expressed by equation (4) 
is performed at a certain observation location X. The 
characteristic velocity U,(X), characteristic tem- 
perature T,(X), and the characteristic boundary layer 
thickness 6(X) are therefore all treated as constants. 
The wave number tl is a complex number (a = tx, fixi) 
and the wave frequency w is a real number. 

= [x(1 -x)/4l(f” afax-f’ V/ax) (14) 

B”+Pr [(3-x)/4]fB’ = Pr [x(1-x)/4] 

x (fY ay/iax -f’ de/ax) (15) 

and the associated boundary conditions 

f(X>O) =f’(x,O) =f’(x, a)-x2 = 0, 
(16) 

e(x, 0) - 1 = ecx, co) = 0. 

The solution of the mainflow problem, equations 
(14)-(16), can be found in the paper by Lee et al. [5]. 

For the problem of mixed convection flow along an 
isothermal vertical flat plate (i.e. y0 = 90”, T, = con- 
stant and 0 < Gr,/Re: < co) covering the entire 
regime from pure forced convection to pure free con- 
vection, as considered in this investigation, boundary 
condition (8) becomes 

S(0) = S(co) = 0. (10) 

The characteristic quantities U,(X), T,(X) and 6(X) 
and their dependent quantities II, 5 and m can be 
conveniently defined, respectively, by 

U, = U,/x*, T, = T,-T,, 6 = X/A, 
(11) 

1 = Rel’2+Gr$4, 5 = (l-~)~, m = 0 

where x = [ 1 + (GrJRej) “‘I- ’ is a modified buoyancy 
parameter which spans between 0 and 1, with 
x = 1 corresponding to pure forced convection 
(Gr,/Re: = 0) and x = 0 to pure free convection 
(Gr,/Re: = co). It is interesting to note that the value 
of 1, i.e. 

Once the mainflow quantities u, u”, v, v”, 8 

and Zz are determined by solving the mainflow prob- 
lem, equations (14k(16), in the proper domain 

0 G 9 =G ?coo, the stability problem as described by 
equations (5k(7) and (10) can be solved by the modi- 
fied Thomas transformation method [3]. However, in 
solving the present stability problem the value of 1 
could be as low as 6, and this fact makes it very 
difficult to obtain a solution. For instance, at Pr = 7 
and x = 0.5, the critical value of 1 is 1* = 6.15 and 
the thickness of the stability boundary layer is found 
to be as large as q = 40, even though the mainflow 
quantities reach their asymptotic values at 1 = 10. To 
remove this numerical difficulty, the domain of the 
instability problem is divided into two sub-domains 

0 G r] < v, and qrn < q < co. In the latter sub-domain 
r) 2 v~, all of the mainflow quantities are either con- 
stants or zero (i.e. u = u, = x2, v = voo, u” = 0, 
V ” = 0, 8’ = 0 and Q = 0) and the wave instability 
equations (5) and (6) become ordinary differential 
equations with constant coefficients. After solving 
equations (5) and (6) analytically for the sub-domain 
qrn < q < cc and imposing the boundary conditions 
&co) = $‘(co) = s(co) = 0, one has (for n > rim) 

f$ = C, e --atl + C, eeB4 + C3 e-r7 (17) 
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s = C3 eCs (1’3) 

where 

p = -v,/2+[(v,/2)2+a2+il(au,-w)]‘/2 (19) 

y= -Prv,/2+[(Prv,/2)2+a2-iPrI(au,-w)]”2. 

(20) 

The second and third terms of the &solution in 

equation (17) can be neglected only when both the 
real parts of (b-a)? and (y-a)? are sufficiently large. 
Under the situation of small 1 values, the real parts 
of (p-a) and (y -cr) are small. The value of q thus 
must be increased if one employs this approximation. 
In the present investigation, for the entire mixed con- 
vection flow regime, I has values in the range of 
6 < ,J < 10’. Thus, special care must be exercised in 
solving the problem. At the edge of the mainflow 
boundary layer (rl = rl,& the three parts of the +- 

solution can be determined from 

[ 

MY-/9 P2-Y2 Y-B 4&i 
= i Ma--d $-a2 a-y I[ 1 -4: (22) 

a/?&a) a2-fi2 p-a 4’; 

where 

A = y’(B-a)+P’(a-y)+a’(y-B). (23) 

In equations (21) and (22), +a is the value of the 
amplitude function at rl = q, = rl, ; i.e. & = ~(v,J = 
+(qm). Note here that rlco denotes the edge of the 
mainflow boundary layer and tl. is defined by nj = 
G- l)h, with h being the step size. At rl = )I”+, and 

1= VII+2 

(24) 

where 

Z1 = exp (-ah), Z2 = exp (-p/z), 

Z3 = exp (-y/z). 
(25) 

Substituting equation (22) into equation (24) and 
expanding the various &functions on both sides of 
the resulting equation by the standard Thomas trans- 
formation [13], one arrives at four algebraic equations 

in the form 

tAl[gn+l,gn+2,9”+3,9n+41T = [~lk7n-2,fIn-I,SnlT. 

(26) 

In equation (26), gj is the Thomas transformation of 
the &function and its derivatives, [A] is a 4 by 4 
matrix, and [B] is a 4 by 3 matrix. Equation (26) is 
then solved to obtain the expressions for gn+, and 
gn+ 2 in terms ofg,_ 2, gn_ , and g,,. For the temperature 
amplitude function, as in ref. [3] equation (18) implies 

* 
Sn+ I = z,ga, d+* = a?,*, (27) 

with g; denoting the Thomas transformation of the 
s-function and its derivatives. Equations (26) and (27) 
are then used as the boundary conditions at q = qoo. 

RESULTS AND DISCUSSION 

Neutral stability curves and critical stability results 
were obtained for Pr = 0.7 and 7. They cover the 
entire mixed convection flow regime (0 < Gr,/Re: 
< co or 1 > x 2 0). In the numerical calculations, 
the eigenvalue problem involved finding a, and ai 
for given w and i under fixed Pr and x for the main- 
flow. Miiller’s method [14] was employed to find 
the eigenvalue a = a,+iai until convergence of a 
solution was attained. In mapping out a neutral stab- 
ility curve, the value of w or 1 was adjusted by Mtiller’s 
method until the solution was converged and at the 
same time gi = 0 was satisfied within a certain tol- 
erance. 

Figure 1 shows the neutral stability curves for 
Pr = 0.7 in the w vs 1 plane for x = 0, 0.15, 0.35 and 
0.5. The curve for x = 0 corresponds to pure free 
convection. Calculations were proceeded from x = 0 
to 0.15 and so on. It should be noted that the curve 
for x = 0.5 is incomplete and no solution can be 
obtained for x > 0.5. In fact, the eigenvalue 
a( = a, +iai) for given o and i becomes increasingly 
difficult to obtain as x becomes larger. As an illus- 
tration, the equi-potential curves of I@(O)] in the a- 
plane is mapped out in Fig. 2 for x = 0.35 and 
(w,1) = (0.03112,47.79). In the region 0 < c(, < 0.3 
and -0.1 < ai < 0.21, there are at least seven eigen- 
values that satisfy 4(O) = 0. Among them, the eigen- 
value with a, = 0.1205 and ai = 0 possesses the mini- 
mum value of ai. The neutral stability curve thus is 
based on this particular eigenvalue, because it cor- 
responds to the least stable mode of disturbances. To 
reach this eigenvalue, an initial guess must fall inside 
the closed curve labeled with lOO]$(O)] = 90 which 
encloses this particular eigenvalue. The allowable 
initial guess for a, and a, should lie within 
Aa, = Aai = + 0.01. Unfortunately, the closed region 
keeps shrinking as x increases, especially on the upper 
branch of the neutral stability curve. The eigenvalues 
eventually disappear from the upper branch of the 
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FIG. 1. Neutral stability curves based on Mode I for Pr = 0.7. FIG. 3. Equi-potential curves of l&O)1 in the a-plane for 

0.1 

=i 

5 

FIG. 2. Equi-potential curves of l+(O)1 in the a-plane for 
Pr = 0.7, x = 0.35 and (w,n) = (0.03112,47.79). The solid 
dots denote the eigenvalues and the solid triangles denote 

the local maximums. 

neutral stability curve for x = 0.5 and 1 > 57. A simi- 
lar behavior was found for Pr = 7, but to conserve 
space the neutral stability curves for Pr = 7 are not 
shown. 

Because calculations could not be accomplished 
from x = 0 to 1, another effort was undertaken to go 
from x = 1 (the pure forced convection end) to x = 0 
(the pure free convection end). Starting with the neu- 
tral stability results for the Blasius flow (i.e. x = 1, 
o* = 0.07098 and I* = 290.6, with the superscript 
‘*’ denoting quantities at the critical point), one can 
accomplish the mapping of neutral stability curves 
from x = 1 to 0 without any particular difficulty (note 
that solution by the Runge-Kutta method will fail 
when L > 104, see ref. [3]). Unexpectedly, dual solu- 
tions were found to exist for 0 < x =$ 0.5. That is, 
the solutions for 0 < x < 0.5 as x proceeds from 1 to 
0 are different from those as x proceeds from 0 to 0.5. 
For instance, for Pr = 0.7 and x = 0.35, a neutral 
stability curve other than the one shown in Fig. 1 is 
obtained. For convenience, the former (having the 
critical values wt = 0.03112 and 2: = 47.79) will be 

Y 

0 

Pr = 0.7, x = 0.35 and (@,A) = (0.01335,5.460 x 104). 

designated as Mode I and the latter (having the critical 
values CD: = 0.01335 and A$ = 5.460 x 104) as Mode 
II. It is important to note that following a smooth 
path in the w vs 1 plane from (w:,n:) on Mode I 
to (w:,Q) on Mode II, one will see a continuous 
transition of the equi-potential map of ]~$(0)] from the 
one shown in Fig. 2 to that shown in Fig. 3. All of the 

seven eigenvalues in Fig. 2 disappear as the change 
from Mode I to Mode II takes place. New closed 
regions containing eigenvalues generate, grow and 
decay later. One of them, however, grows to a very 
large size and contains the eigenvalue with a, = 0.2493 
and ai = 0 which has the minimum value of cli (see 
Fig. 3). Therefore, the family of eigenvalues for Mode 
I is different from that for Mode II. 

The neutral stability curves for Pr = 0.7 based on 
Mode II are plotted in Figs. 4 and 5. From Fig. 4, one 
can see that the neutral stability curve shifts to higher 
1 values very rapidly as x decreases from 1 to 0.5. A 
change in the shape of the neutral stability curve 
occurs as x decreases further to 0.3. The detailed 
changing of the neutral stability curve from x = 0.5. 
to 0.3 is shown in Fig. 5. As x decreases from 0.5 to 
0.35, a ‘neck’ is seen to form on the tip of the curve. 
It is rather interesting to see that the neutral stability 
curve is separated into two regions at x = 0.325. Two 
critical points thus can be identified as shown in Fig. 
5, with one being labeled with H (head) and the 
other with S (shoulder). The two-region neutral 
stability curve exists at least in the x range of 
0.0323 < x < 0.0326. The head region, however, was 
not found for x < 0.32. Based on the shoulder region, 
the neutral stability curve moves to smaller 1 values 
as x decreases from 0.3 to 0 (see Fig. 4). A similar 
behavior was found to exist for Pr = 7. However, the 
neutral stability curves for Pr = 7 are not illustrated 
in this paper. 

The critical values of 1* for Pr = 0.7 and 7 are 
plotted in Fig. 6 as a function of x. These values are 
listed in Table 1 for Pr = 0.7 and in Table 2 for Pr = 7. 



l/4 
A = Re??? Gr, 

FIG. 4. Neutral stability curves based on Mode II for 
0 6 x < 1, Pr = 0.7. 

A i Re1/** Gr, l/4 

FIG. 5. Detailed transition of the” neu?ral stability curves 
from x = 0.5 to 0.3 based on Mode II for Pr = 0.7. 

The results corresponding to Mode I are shown in the 
left lower portion of Fig. 6. As discussed earlier, the 
eigenvalues for this mode vanish when x 2 0.5. The 
results by Lee ef ai. [Z] are also plotted in the figure 
for comparison. In their investigation, Lee et al. [2] 
employed the local non-similarity method in solving 
the transformed mainflow equations and the modified 
Thomas method [3] in solving the flow instability 
problem. Very good agreement is seen between the 
present results and those of Lee et al. [2], particularly 
for Pr = 0.7. The results in Fig. 6 are presented in 
terms of 

1* = (ReJ”+Grj’4)* = (Grjj4)*(1 -x)-l 

If they were plotted in terms of (Griji4)* = 1*(1 -;c), 
one would see that the critical Grashof number 
(Grjj4)* would decrease monotonously as x increases. 
This behavior agrees with the results of Carey and 
Gebhart [4] for the case of uniform surface heat flux 
(see the discussion in Lee et al. [2]). 

The curves on the upper portion of Fig. 6 are the 
results based on Mode II. A sharp increase in 1* can 
be observed near x = 0.6 as x decreases from 1 to 0.5. 
In addition, a crossover of the curves for Pr = 0.7 
and 7 can be seen at x = 0.614. This means that the 
buoyancy flow has strong positive effects on the flow 
stability for both Pr = 0.7 and 7. The effects are 

Mode I 

FIG. 6. Critical d* values as a function of x (0 6 x 6 1) for 
Pr = 0.7 and 7. 

stronger for Pr = 0.7 than for Pr = 7 when x > 0.614 
and vice versa when x. < 0.614. The results from 
Mucoglu and Chen fl] are seen to be in excellent 
agreement with the present investigation. A jump of 
the rZ* values is found in a small range of x values near 
x = 0.325 for Pr = 0.7 and near x = 0.425 for Pr = 7 
where two-region neutral stability curves exist. As 
pointed out earlier, the letter ‘H’ denotes the critical 
point based on the ‘head’ region and ‘S’ denotes that 
based on the ‘shoulder’ region. One can also see that 
dual solutions exist in the range of 0 < x < 0.5 with 
1* values being of the order of 10 for Mode I and of 
the order of 10’ for Mode II. Hence, in the range 
of 0 < x < 0.5 Mode II is not important as far as 
instability of the flow is concerned. The mechanism 
of how the critical value R* in a physical flow changes 
from Mode I to Mode II in the vicinity of x; = 0.5 is 
not known. This is not due to the use of the quasi- 
parallel flow model in the present analysis, because 
the change between Mode I and Mode II is from O( 10) 
to 0(105) and the error from the quasi-parallel flow 
model is expected to be only a few percent (see refs. 
[lo, 1 I]). Unfortunately, this paper is the only inves- 
tigation that examines the flow instability for the 
entire mixed convection regime and there are no 
experimental data available for comparison to sub- 
stantiate the present predictions. 

For the pure forced convection case (x; = l), the 
prediction agrees well with available experimental 
data. As compared with the experimental value of 
R* = 220 from Schubauer and Skramstad [ 151 and Ross 
ef al. [16], the quasi-parallel flow model predicts a 
critical Reynolds number of 1* = 290.6 [3], an over- 
prediction of about 32%. This discrepancy can be 
reduced when the effect of the axial variation of the 
disturbance amplitude function is taken into account 
in the analysis by the non-parallel flow model (see refs. 
[lo, 111). For the pure free convection case (x = 0), 
however, the available experimental data have wide 
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Table 1. The critical stability results for Pr = 0.7 
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X Gr,/Re: I* 
Mode I 
w* 1* 

Mode II 
w* 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.325 

0.35 1.190(+1) 
0.40 5.063 (+0) 
0.45 2.232(+0) 
0.50 l.ooo(+o) 
0.55 4.481 (- 1) 
0.60 1.975(-l) 
0.65 8.407 ( - 2) 
0.75 1.235(-2) 
1 .oo 0 

1.30?(+5) 
6.561 (+3) 
1.031(+3) 
2.560(+2) 
s.loo(+l) 
2.964 (+ 1) 
1.861 (+ 1) 

33.33 0.08174 0.1634 
35.07 0.07039 0.1558 
36.97 0.06046 0.1482 
39.05 0.05201 0.1412 
41.30 0.04492 0.1348 
43.66 0.03908 0.1291 
45.97 0.03452 0.1245 
46.98 0.03263 0.1222 

47.79 
48.00 
44.04 
36.63 

0.03112 
0.02864 
0.02646 
0.02334 

- 

0.1205 
0.1157 
0.1060 
0.0864 

6.201 (4) 0.04595 0.4384 
7.300 (4) 0.03709 0.4059 
8.862 (4) 0.02950 0.3732 
1.106(5) 0.02303 0.3398 
1.400 (5) 0.01762 0.3051 
1.744 (5) 0.01332 0.2685 
2.155 (5) 0.00964 0.2284 

(S) 2.254 (5) 0.00838 0.2100 
(H) 6.246 (4) 0.01453 0.2666 

5.460 (4) 0.01335 0.2493 
4.851 (4) 0.01102 0.2145 
4.544 (4) 0.00828 0.1658 
4.102 (4) 0.00601 0.1169 
2.829 (4) 0.0048 1 0.0812 
1.012 (4) 0.00582 0.0709 
2.070 (3) 0.01129 0.0871 
4.724 (2) 0.02822 0.1285 
2.906 (2) 0.07098 0.1764 

a(b) = ax 10”. 
(S) = shoulder 
(H) = head. 

Table 2. The critical stability results for Pr = 7 

X GrJReT 

0.00 
1.30?(+5) 0.05 

0.10 6.561 (+3) 
0.15 1.031 (+3) 
0.20 2.560(+2) 
0.25 S.lOO(+l) 
0.30 2.964 (+ 1) 
0.35 l.l90(f 1) 
0.40 5.063 ( + 0) 
0.425 3.351 (+o) 

0.45 2.232(+0) 
0.50 l.ooo(+o) 
0.55 4.481(-l) 
0.60 1.975(-l) 
0.65 8.407 ( - 2) 
0.75 1.235(-2) 
1 .oo 0 

a(b) = ax lob. 
(S) = shoulder. 
(H) = head. 

/I* 

16.82 
17.68 
18.56 
19.43 
20.25 
20.98 
21.60 
22.09 
21.33 
18.99 

12.44 
6.15 

Mode I 
Lo* 

0.11436 
0.09842 
0.08458 
0.07277 
0.06290 
0.05476 
0.04801 
0.04170 
0.03318 
0.02633 

0.01726 
0.01301 

a: 

0.3813 
0.3631 
0.3456 
0.3293 
0.3143 
0.2999 
0.2836 
0.2570 
0.1985 
0.1475 

0.0860 
0.0534 

Mode II 
I* w* a: 

4.927 (5) 0.04092 0.6705 
3.804 (5) 0.03127 0.6001 
3.054 (5) 0.02536 0.5595 
2.884 (5) 0.02055 0.5204 
3.013 (5) 0.01522 0.4521 
3.446 (5) 0.01112 0.3857 
4.357 (5) 0.00771 0.3118 
6.265 (5) 0.00482 0.2262 
1.094 (6) 0.00249 0.1342 

(S) 1.644 (6) 0.00164 0.0882 
(H)4.835 (5) 0.00249 0.1150 

4.157 (5) 0.00213 0.0897 
2.550 (5) 0.00167 0.0568 
1.088 (5) 0.00168 0.0413 
I. 540 (4) 0.00352 0.0482 
1.270 (3) 0.01071 0.0766 
4.318(2) 0.02885 0.1293 
2.906 (2) 0.07098 0.1764 

Table 3. A comparison of critical Grashof numbers for pure 
free convection 

to note that the value of (Gr:j4)* obtained by T&ton 

[6] for air is about 50% lower than that obtained by 

Investigator Year Fluid (Gr,“‘)* Lloyd and Sparrow [8] for water. In contrast, Lock et 
al. [7] obtained a value of (Grj’“)* for air which is 

Tritton [6] 1963 air 55.5 
Lock et al. [7] 1967 air 164 

about 50% higher than the value of Lloyd and Spar- 

Lloyd and Sparrow [S] 1970 water 111 
row [8]. The present investigation predicts a value of 

Present predictions Pr = 0.7 33.33 
(Grjj4)* for air (Pr = 0.7) which is about twice as 

(Mode I) Pr = 7 16.82 large as for water (Pr = 7). More experiments and 

analyses are needed to examine the instability charac- 
teristics of pure free convection and strongly buoyant 

scatters among investigators. The experimental data mixed convection flows and to resolve the great dis- 
along with the present predictions (based on Mode I) crepancies that exist between results from analyses 
are listed in Table 3 for comparisons. It is interesting and measurements. 



1750 S. L. LEE et al. 

CONCLUSION 

Wave instability of mixed convection flow along iso- 
thermal flat plates is investigated by the linear quasi- 
parallel flow model for the entire regime. The flow 
instability equations for the disturbance amplitude 
functions are solved by employing a modified Thomas 
method. Dual solutions (Mode I and Mode II) are 
found to exist in the range of 0 < x < 0.5 for both 
Pr = 0.7 and 7. The two neutral stability curves, one 
for the Blasius flow (x = 1 and 1* = 290.6) and the 
other for the pure free convection flow (x = 0 and 
1* = 33.33), are found to originate from two different 
modes, because the family of eigenvalues based on 
Mode I is different from that based on Mode II. 
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CARACTERISTIQUES D’INSTABILITE D’ONDE POUR LE REGIME COMPLET 
DE CONVECTION MIXTE LE LONG DE PLAQUES PLANES VERTICALES 

RCsum&L’instabilitt ondulatoire de convection mixte le long d’un plan vertical est analysee par la theorie 
lineaire, pour le regime complet de convection mixte (0 c x < 1, x = [l + (Gr,/Re:)“4]- ‘) pour des fluides 
avec des nombres de Prandtl 0,7 et 7. Dans cette analyse, le domaine au dela de la frontiere de la couche 
limite (n > q,) est rtsolu analytiquement pour fournir les conditions aux limites a n = rl=, Ce traitement 
est important pour utiliser la transformations modifite de Thomas lorsque 3, est petit (i = Rei’* + Grif4). 
Des solutions duales des valeurs critiques I* sont existantes dans le domaine 0 < x < 0,5. Les resultats 
montrent que les deux courbes de stabilite neutre, l’une pour l’tcoulement de Blasius (x = 1 ou Gr, = 0, avec 
1* = 290,6) et l’autre pour l’tcoulement pur de convection naturelle (x = 0 ou Re, = 0, avec I* = 33,33) 

correspondant a deux modes differents. 

EIGENSCHAFTEN DER WELLENINSTABILITAT FUR DEN GESAMTBEREICH DER 
GEMISCHTEN KONVEKTIONSSTRdMUNG ENTLANG EINER VERTIKALEN 

EBENEN PLATTE 

Zusammenfassung-Die Welleninstabilitlt der gemischten Konvektionsstrijmung entlang einer isothermen 
vertikalen ebenen Platte wird mit der linearen Theorie im Gesamtbereich der gemischten Konvektion 
(0 < x < 1, x =[l +(Gr,/Re2)1’4]-‘) fiir Fluide mit Prandtl-Zahlen zwischen 0,7 und 7 untersucht. Der 
Bereich ilber der Hauptstriimungs-Grenzschichtkante (q > qm) wird analytisch gel&t, urn Grenzschicht- 
bedingungen bei q = qrn anstatt solchen bei r) = 00 zu beschaffen. Dieses Vorgehen ist wichtig bei der 
modifizierten Thomas-Transformation, wenn I (1 = Re:‘*+Grd’4) klein ist. Zweifache Losungen von 
kritischen Werten fur 1* treten in dem Bereich 0 < x ( 0,5 auf. Die Ergebnisse zeigen, daB die zwei 
begrenzenden neutralen Stabilitltskurven, die eine fur die Blasius-Striimung (x = 1 oder Gr, = 0, mit A* 
= 290,6) und die andere fur die reine freid Konvektionsstriimung (x = 0 oder Rex = 0, mit i* = 33,33) 

zwei verschiedenen Erscheinungsformen entsprechen. 
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XAPAKTEPHCTWKRI BOJIHOBOR HEYCTOftsHBOCTM PEIKKMMA CMEBIAHHOB 
KOHBEKutlM OKOJIO BEPTHKAJIbHbIX l-UIOCKMX l-IJIACTkiH 

AIIIIOT~QWF-~QOBO~HTCK ammi3 ~0nH0B0fi HeycToi+imocTH TeqeHm npH cMellraHHoii xoHBexum 

OXOJlO H30TepMHYeCXOti BepTEiXaJlbHOk IlJIOCKOii nJiaCTWHbI B PaMXaX JlliHetiHOti TeOpHH AJlK BCer0 

pemMacMeruafiHokKoHBexwiH (0~ x < l,x=[l + (Gr=/Re3”4]-‘)mHnronekc wcnaMsi~paenTna, 

paeHblMki 0,7 A 7.nonyqe~O aHanHTwieCxOe pelueme Ann o6nacTH OCHOBHO~O TeYeHHn me norpawiu- 
HOrO CJlOa(q 3 &)npH rpaHW'IHbIX yCJIOBHRX llJIR q = 'fm BMeCTO tj = CO.TaKoii IIOPXOA 3@$eXTBBeH 

npw kiCnonb3oBaHwi MOnH&wipOBaHHorO IIpeO6pa30BaHHK ToMaca npu ManoM A (A= Rei” + Gr:‘4). 
HafineHo, -fTo cywem3ymT HeemHcreeHme pemeHaK nnn KpwTwiecxsx 3Haqemti A* B nwanasofie 

06 ,y 6 0,5.nOJIy=leHHbIe pe3yJlbTaTbl nOKa3bIBalOT,'iTO o6e XpHBbIe IlpeLleJlbHOk HeiiTpaJlbHOi-4 yCTOfi- 

weocTtr,oI&Ha u3 XoTopbtx OnmmBaeTTeqeHHe 6na3wyca(X = 1 kin&i Gr, = 0 npt! I* = 290,6),a npyran 
TOnbKO CB060AHO-KOHBeXTUBHOe TeqeHWe (x = 0 &iJIIi Re, = 0 t&W A* = 33,33), COOTBeTcTBylOT pa3JtFVi- 

HbIMMOllaMTe'ieHHR. 


